Problem: 1: Consider

$$
O(0,0,0)
$$

Compute the flux of $\langle x, y, z\rangle$ through S in the direction away from the origin.
a) Do this by first parametrizing S, and then Setting up the integnz) directly
b) Car yon figurine ont a way to solve this using the Dreegence Thru?

Problem:

Compute $\int_{c}\left\langle 2 x y, x^{2}+x\right\rangle \cdot d \vec{r}$ in as many different ways us you car think of. oo. direct computation, FTLI, Greens Tho...

La)

$$
\begin{aligned}
& \vec{r}(u, v)=\langle 1,0,1\rangle+u\langle-3,1,2\rangle+v\langle 3,2,4\rangle \\
& =\langle 1-3 u+3 v, u+2 v, \mid+2 u+4 v\rangle
\end{aligned}
$$

Alternative approach: what plane is the triangle in?

$$
\begin{aligned}
& \vec{n}=\langle-3,1,2\rangle \\
& x\langle 3,2,4\rangle \\
&=\langle 0,18,-9\rangle \\
& \vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
& 18(y-0)+(-9)(z-1)=0
\end{aligned}
$$

$$
\begin{gathered}
18 y-9 z+9=0 \\
2 y-z+1=0
\end{gathered}
$$

So a parametrization conld be

$$
\vec{r}(x, y)=\langle x, y, 2 y+1\rangle
$$

Comment on flux: it is a measurement of "how much"
 of your vector field is. flowing "throe gt" an object.

See end of 5.16 .5 for flux in 2-dimensions.

$\%$
$\vec{F}=d \vec{S}$ is the infinitesimal amount flowing through the ting patch
So altogether one integrates over the surface

$$
\iint_{\text {surface }} \vec{F} \cdot d \vec{S}
$$

Frack to the problem, (using the first parametrization)

$$
\vec{r}_{n} \times \stackrel{\rightharpoonup}{r}_{r}
$$

$\vec{r}_{r} \times \vec{r}_{n}$
which one?)

$$
4
$$

comprise this; find

$$
\begin{aligned}
& \text { this; find } \\
& \langle 0,18,-9\rangle
\end{aligned}
$$

$$
\langle 1,0,1\rangle \cdot\langle 0,18,-9\rangle=-9<0
$$

so the angle between them is obtuse.
So $\langle 0,16,-9\rangle$ is \AA
and I actually wont $\langle 0,-18,9\rangle$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1-u}\langle 1-3 u+3 v, u+2 v, 1+2 u+4 v\rangle \cdot\langle 0,-18,9\rangle d v d u \\
& = \\
& =9 / 2
\end{aligned}
$$

Before we move on to 1b), consider a question like...

some vector field

$$
\vec{F}
$$

Asked to compote $\iint_{S} \vec{F} \cdot d \vec{S}$
Could compute directly, or use dna thin

The moral is: even is the surface isn't closed, sometimes it may be easy to close it and then use the divergence the -

solid tetrahedron $O P Q R$ (call it E)
Bounding of E is 4 trimgles $(S$ is one of tami).

$$
\begin{aligned}
& \text { 3. Vol (teitrakedron OPDR) CExamine prcture } \\
& \text { the vec: fielol is } \\
& =3:\left(\frac{1}{3}(\text { Arenof bose })(\text { height })\right) \\
& \text { parallel to the } \\
& \text { Theree fouss) } \\
& =(\text { Area of base })(\text { height })=\left(\left.\frac{1}{2} \right\rvert\, \vec{u} \times+\vec{t}\right) \cdot\left(\frac{|\vec{w} \cdot(\vec{u} \times \vec{v})|}{|\vec{u} \times \overrightarrow{+}|}\right) \\
& \vec{u} \times \vec{v} \uparrow \underbrace{\stackrel{\rightharpoonup}{w}}_{\vec{u}} \underset{\sim}{\vec{v}} \\
& \text { abs } v_{z} l \text { of } \\
& \text { scalurponj, ie } \\
& \left|\operatorname{com}_{\operatorname{an} x i} \vec{b}\right| \\
& \left.=\frac{1}{2}| | \vec{w} \cdot(\vec{u} \times \vec{v}) \right\rvert\,
\end{aligned}
$$

